

REal World Advanced Technologies foR Diesel Engines

EUROPEAN COMMISSION Horizon 2020 H2020-MG-2014-2015 GA No. 636380

Deliverable No.	REWARD D3.9	
Deliverable Title	Prediction method for friction	
Deliverable Type	Report	
Dissemination level	Confidential – member only (CO)	
Written By	Dr. Ricardo H. Brugnara (SCF) Dr. Joanna Procelewska (SCF)	2018-05-16
Status	Final	2018-06-11
Checked by	Dr. Ricardo H. Brugnara (SCF) WP3 Leader	2018-06-04
Submitted to Executive Board		2018-06-05
Approved by Executive Board (EB)	Approved and accepted by all members	2018-06-11

H2020-MG-2014-2015 - 636380 - REal World Advanced Technologies for Diesel Engines

Acknowledgement:

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

- 1 AVL AVL List GmbH AT
- 2 REN Renault SAS FR
- 3 VCC Volvo Car Corporation SE
- 4 CRF CRF SCpA IT
- 5 CNRIM Instituto Motori Consiglio Nazionale delle Ricerche (CNR) IT
- 6 JM Johnson Matthey Plc UK
- 7 RIC Ricardo Plc UK
- 8 SCF Schaeffler AG DE
- 9 LMM Le Moteur Moderne FR
- 10 DELPHI Delphi Automotive Systems Luxembourg S.A. LU
- 11 UNR Uniresearch BV NL
- 12 IFPEN IFP Energies Nouvelles FR
- 13 VIF Virtual Vehicle Research Center AT
- 14 CTH Chalmers Tekniska Högskola SE
- 15 CTU Czech Technical University CZ
- 16 UPVLC Universitat Politecnica de Valencia Motores Termicos ES

Disclaimer:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 636380.

Publishable Executive summary

A further task in work package 3 is to get a better understanding of the physical and chemical interactions between coated components for the valve train and low viscosity engine oils. Therefore, a virtual model have been formulated and used to evaluate all generated tribological data from different model tests and application-oriented cylinder head test rig.

